The plant is also known as hemp, although this term is often used to refer only to varieties of Cannabis cultivated for non-drug use. Cannabis has long been used for hemp fibre, for hemp oils, for medicinal purposes, and as a recreational drug. Industrial hemp products are made from cannabis plants selected to produce an abundance of fiber. To satisfy the UN Narcotics Convention, some cannabis strains have been bred to produce minimal levels of tetrahydrocannabinol (THC), the principal psychoactive constituent. Some strains have been selectively bred to produce a maximum of THC (a cannabinoid), the strength of which is enhanced by curing the flowers. Various compounds, including hashish and hash oil, are extracted from the plant.[7]
At least 38 states considered legislation related to industrial hemp in 2018. These bills ranged from clarifying existing laws to establishing new licensing requirements and programs. At least 5 states – Alaska, Arizona, Kansas, Missouri and Oklahoma – enacted legislation in 2018 establishing hemp research and industrial hemp pilot programs. Georgia adopted a resolution to create the House Study Committee on Industrial Hemp Production. States, already allowing for industrial hemp programs, continued to consider policies related to licensure, funding, seed certification, and other issues. For example, Tennessee amended its Commercial Feed Law to include hemp. 

Dr. Ethan Russo, medical director at Phytecs, a biotechnology company spearheading research into plant- based medicines and the endocannabinoid system, took issue with Titus’s claim, however. “Bioaccumulators can recruit heavy metals from the soil,” Russo said, “but breaking them down would be alchemy.” Government regulation of the pharmaceutical industry is designed to protect consumers from unfounded scientific claims.
Air-dried stem yields in Ontario have from 1998 and onward ranged from 2.6-14.0 tonnes of dry, retted stalks per hectare (1-5.5 t/ac) at 12% moisture. Yields in Kent County, have averaged 8.75 t/ha (3.5 t/ac). Northern Ontario crops averaged 6.1 t/ha (2.5 t/ac) in 1998. Statistic for the European Union for 2008 to 2010 say that the average yield of hemp straw has varied between 6.3 and 7.3 ton per ha.[67][68] Only a part of that is bast fiber. Around one tonne of bast fiber and 2-3 tonnes of core material can be decorticated from 3-4 tonnes of good-quality, dry-retted straw. For an annual yield of this level is it in Ontario recommended to add nitrogen (N):70–110 kg/ha, phosphate (P2O5): up to 80 kg/ha and potash (K2O): 40–90 kg/ha.[69] The average yield of dry hemp stalks in Europe was 6 ton/ha (2.4 ton/ac) in 2001 and 2002.[14]
The basic commercial options for growing hemp in North America is as a fiber plant, an oilseed crop, or for dual harvest for both seeds and fiber. Judged on experience in Canada to date, the industry is inclined to specialize on either fiber or grain, but not both. Hemp in our opinion is particularly suited to be developed as an oilseed crop in North America. The first and foremost breeding goal is to decrease the price of hempseed by creating more productive cultivars. While the breeding of hemp fiber cultivars has proceeded to the point that only slight improvements can be expected in productivity in the future, the genetic potential of hemp as an oilseed has scarcely been addressed. From the point of view of world markets, concentrating on oilseed hemp makes sense, because Europe has shown only limited interest to date in developing oilseed hemp, whereas a tradition of concentrating on profitable oilseed products is already well established in the US and Canada. Further, China’s supremacy in the production of high-quality hemp textiles at low prices will be very difficult to match, while domestic production of oilseeds can be carried out using technology that is already available. The present productivity of oilseed hemp—about 1 t/ha under good conditions, and occasional reports of 1.5 to 2 t/ha, is not yet sufficient for the crop to become competitive with North America’s major oilseeds. We suggest that an average productivity of 2 t/ha will be necessary to transform hempseed into a major oilseed, and that this breeding goal is achievable. At present, losses of 30% of the seed yields are not uncommon, so that improvements in harvesting technology should also contribute to higher yields. Hemp food products cannot escape their niche market status until the price of hempseed rivals that of other oilseeds, particularly rapeseed, flax, and sunflower. Most hemp breeding that has been conducted to date has been for fiber characteristics, so that there should be considerable improvement possible. The second breeding goal is for larger seeds, as these are more easily shelled. Third is breeding for specific seed components. Notable are the health-promoting gamma-linolenic acid; improving the amino acid spectrum of the protein; and increasing the antioxidant level, which would not only have health benefits but could increase the shelf life of hemp oil and foods.
The CBD utilized in our tinctures is extracted from industrial hemp cultivated in the United States. To further ensure quality and purity, our industrial hemp goes through a supercritical CO2 extraction process to obtain the best possible CBD solution. This solution is then formulated by our board-certified pharmacists into finished products and sent out for third-party testing. Our CBD oil is made with high-quality CBD extracted from organic hemp that is abundant in naturally produced terpenes, oils, vitamins, omega fatty acids, and other components.
In a randomized clinical trial, researchers compared the safety and effectiveness of orally administered Cannabis extract (2.5 mg THC and 1 mg CBD), THC (2.5 mg), or placebo for the treatment of cancer-related anorexia-cachexia in 243 patients with advanced cancer who received treatment twice daily for 6 weeks. Results demonstrated that although these agents were well tolerated by these patients, no differences were observed in patient appetite or quality of life among the three groups at this dose level and duration of intervention.[42]

Hemp plants can be vulnerable to various pathogens, including bacteria, fungi, nematodes, viruses and other miscellaneous pathogens. Such diseases often lead to reduced fiber quality, stunted growth, and death of the plant. These diseases rarely affect the yield of a hemp field, so hemp production is not traditionally dependent on the use of pesticides.

This summary is written and maintained by the PDQ Integrative, Alternative, and Complementary Therapies Editorial Board, which is editorially independent of NCI. The summary reflects an independent review of the literature and does not represent a policy statement of NCI or NIH. More information about summary policies and the role of the PDQ Editorial Boards in maintaining the PDQ summaries can be found on the About This PDQ Summary and PDQ® - NCI's Comprehensive Cancer Database pages.
In the end, companies like HempMedsPx are asking consumers simply to trust them. CBD oils are never subjected to systematic testing by any U.S. regulatory body. The FDA regulates all pharmaceutical labs in the country. But cannabis labs like the ones that HempMedsPx and others use are not, because cannabis is not federally recognized as a legal drug.

There have been ten clinical trials on the use of inhaled Cannabis in cancer patients that can be divided into two groups. In one group, four small studies assessed antiemetic activity but each explored a different patient population and chemotherapy regimen. One study demonstrated no effect, the second study showed a positive effect versus placebo, the report of the third study did not provide enough information to characterize the overall outcome as positive or neutral. Consequently, there are insufficient data to provide an overall level of evidence assessment for the use of Cannabis for chemotherapy-induced N/V. Apparently, there are no published controlled clinical trials on the use of inhaled Cannabis for other cancer-related or cancer treatment–related symptoms.

The most widespread claim for environmental friendliness of hemp is that it has the potential to save trees that otherwise would be harvested for production of lumber and pulp. Earlier, the limitations of hemp as a pulp substitute were examined. With respect to wood products, several factors appear to favor increased use of wood substitutes, especially agricultural fibers such as hemp. Deforestation, particularly the destruction of old growth forests, and the world’s decreasing supply of wild timber resources are today major ecological concerns. Agroforestry using tree species is one useful response, but nevertheless sacrifices wild lands and biodiversity, and is less preferable than sustainable wildland forestry. The use of agricultural residues (e.g. straw bales in house construction) is an especially environmentally friendly solution to sparing trees, but material limitations restrict use. Another chief advantage of several annual fiber crops over forestry crops is relative productivity, annual fiber crops sometimes producing of the order of four times as much per unit of land. Still another important advantage is the precise control over production quantities and schedule that is possible with annual crops. In many parts of the world, tree crops are simply not a viable alternative. “By the turn of the century 3 billion people may live in areas where wood is cut faster than it grows or where fuelwood is extremely scarce” (World Commission on Environment and Development 1987). “Since mid-century, lumber use has tripled, paper use has increased six-fold, and firewood use has soared as Third World populations have multiplied” (Brown et al. 1998). Insofar as hemp reduces the need to harvest trees for building materials or other products, its use as a wood substitute will tend to contribute to preserving biodiversity. Hemp may also enhance forestry management by responding to short-term fiber demand while trees reach their ideal maturation. In developing countries where fuelwood is becoming increasingly scarce and food security is a concern, the introduction of a dual-purpose crop such as hemp to meet food, shelter, and fuel needs may contribute significantly to preserving biodiversity.
Cannabis has held sacred status in several religions. It has been used in an entheogenic context – a chemical substance used in a religious, shamanic, or spiritual context[59] - in the Indian subcontinent since the Vedic period dating back to approximately 1500 BCE, but perhaps as far back as 2000 BCE. There are several references in Greek mythology to a powerful drug that eliminated anguish and sorrow. Herodotus wrote about early ceremonial practices by the Scythians, thought to have occurred from the 5th to 2nd century BCE. In modern culture the spiritual use of cannabis has been spread by the disciples of the Rastafari movement who use cannabis as a sacrament and as an aid to meditation. The earliest known reports regarding the sacred status of cannabis in the Indian subcontinent come from the Atharva Veda estimated to have been written sometime around 2000–1400 BCE.[60]
Fig. 25. The “hemp house” under construction on the Oglala Lakota Nation (Pine Ridge Reservation), South Dakota. Foundation blocks for the house are made with hemp fiber as a binder in cement. Stucco is also of hemp. Shingles are 60% hemp in a synthetic polymer. Hemp insulation is used throughout. (Courtesy of Oglala Sioux Tribe, Slim Butte Land Use Association, and S. Sauser.)
Figuring out how much CBD oil to take can feel like trying to navigate through a complicated maze. The sheer volume of CBD brands on the market can create confusion for consumers, and when you take a closer look, it’s not difficult to understand why. Not only do vendors use different source materials (CBD-rich cannabis vs. industrial hemp, different strains, etc.), but they also implement different extraction techniques .
A 100-gram portion of hulled hemp seeds supplies 586 calories. They contain 5% water, 5% carbohydrates, 49% total fat, and 31% protein. Hemp seeds are notable in providing 64% of the Daily Value (DV) of protein per 100-gram serving.[19] Hemp seeds are a rich source of dietary fiber (20% DV), B vitamins, and the dietary minerals manganese (362% DV), phosphorus (236% DV), magnesium (197% DV), zinc (104% DV), and iron (61% DV). About 73% of the energy in hempseed is in the form of fats and essential fatty acids,[19] mainly polyunsaturated fatty acids, linoleic, oleic, and alpha-linolenic acids.[20]