The scientific debate regarding taxonomy has had little effect on the terminology in widespread use among cultivators and users of drug-type Cannabis. Cannabis aficionados recognize three distinct types based on such factors as morphology, native range, aroma, and subjective psychoactive characteristics. Sativa is the most widespread variety, which is usually tall, laxly branched, and found in warm lowland regions. Indica designates shorter, bushier plants adapted to cooler climates and highland environments. Ruderalis is the informal name for the short plants that grow wild in Europe and Central Asia.
Fatty Acids. The quality of an oil or fat is most importantly determined by its fatty acid composition. Hemp is of high nutritional quality because it contains high amounts of unsaturated fatty acids, mostly oleic acid (C18:1, 10%–16%), linoleic acid (C18:2, 50%–60%), alpha-linolenic acid (C18:3, 20%–25%), and gamma-linolenic acid (C18:3, 2%–5%) (Fig. 37). Linoleic acid and alpha-linolenic acid are the only two fatty acids that must be ingested and are considered essential to human health (Callaway 1998). In contrast to shorter-chain and more saturated fatty acids, these essential fatty acids do not serve as energy sources, but as raw materials for cell structure and as precursors for biosynthesis for many of the body’s regulatory biochemicals. The essential fatty acids are available in other oils, particularly fish and flaxseed, but these tend to have unpleasant flavors compared to the mellow, slightly nutty flavor of hempseed oil. While the value of unsaturated fats is generally appreciated, it is much less well known that the North American diet is serious nutritionally unbalanced by an excess of linoleic over alpha-linonenic acid. In hempseed, linoleic and alpha-linolenic occur in a ratio of about 3:1, considered optimal in healthy human adipose tissue, and apparently unique among common plant oils (Deferne and Pate 1996). Gamma-linolenic acid or GLA is another significant component of hemp oil (1%–6%, depending on cultivar). GLA is a widely consumed supplement known to affect vital metabolic roles in humans, ranging from control of inflammation and vascular tone to initiation of contractions during childbirth. GLA has been found to alleviate psoriasis, atopic eczema, and mastalgia, and may also benefit cardiovascular, psychiatric, and immunological disorders. Ageing and pathology (diabetes, hypertension, etc.) may impair GLA metabolism, making supplementation desirable. As much as 15% of the human population may benefit from addition of GLA to their diet. At present, GLA is available in health food shops and pharmacies primarily as soft gelatin capsules of borage or evening primrose oil, but hemp is almost certainly a much more economic source. Although the content of GLA in the seeds is lower, hemp is far easier to cultivate and higher-yielding. It is important to note that hemp is the only current natural food source of GLA, i.e. not requiring the consumption of extracted dietary supplements. There are other fatty acids in small concentrations in hemp seed that have some dietary significance, including stearidonic acid (Callaway et al. 1996) and eicosenoic acid (Mölleken and Theimer 1997). Because of the extremely desirable fatty acid constitution of hemp oil, it is now being marketed as a dietary supplement in capsule form (Fig. 38).
There is great variation in Cannabis sativa, because of disruptive domestication for fiber, oilseed, and narcotic resin, and there are features that tend to distinguish these three cultigens (cultivated phases) from each other. Moreover, density of cultivation is used to accentuate certain architectural features. Figure 5 illustrates the divergent appearances of the basic agronomic categories of Cannabis in typical field configurations.
Specific city and county laws have been enacted to regulate how citizens and tourists may possess and consume marijuana. Penalties exist for driving while under the influence of marijuana. Someone driving under the influence of marijuana is considered impaired in both Colorado and Washington when five nanograms per milliliter (ng/mL) of blood or more of active THC is detected.
The most valid claims to environmental friendliness of hemp are with respect to agricultural biocides (pesticides, fungicides, herbicides). Cannabis sativa is known to be exceptionally resistant to pests (Fig. 51), although, the degree of immunity to attacking organisms has been greatly exaggerated, with several insects and fungi specializing on hemp. Despite this, use of pesticides and fungicides on hemp is usually unnecessary, although introduction of hemp to regions should be expected to generate local problems. Cannabis sativa is also relatively resistant to weeds, and so usually requires relatively little herbicide. Fields intended for hemp use are still frequently normally cleared of weeds using herbicides, but so long as hemp is thickly seeded (as is always done when hemp is grown for fiber), the rapidly developing young plants normally shade out competing weeds.
Although marijuana smoke contains a number of carcinogens findings from a limited number of well-designed studies do not suggest an increased risk for the development of either lung or upper airway cancer from light or moderate use. However, the evidence is mixed when it comes to the carcinogenic risks of heavy, long-term marijuana users, according to this study.

Cannabis impairs psychomotor performance in a wide variety of tasks, such as motor coordination, divided attention, and operative tasks of many types; human performance on complex machinery can be impaired for as long as 24 hours after smoking as little as 20 mg of THC in cannabis; there is an increased risk of motor vehicle accidents among persons who drive when intoxicated by cannabis.
In the United States, over three million people suffer from epilepsy – 470,000 of those people are children. Epilepsy is a disorder of the brain that causes seizures – of which there are over thirty different kinds, ranging from mild and infrequent to life-threatening. Not surprisingly, people with epilepsy face significant challenges – from the cost of healthcare to work limitations and social isolation.

Cannabis plants produce a unique family of terpeno-phenolic compounds called cannabinoids, some of which produce the "high" which may be experienced from consuming marijuana. There are 483 identifiable chemical constituents known to exist in the cannabis plant,[48] and at least 85 different cannabinoids have been isolated from the plant.[49] The two cannabinoids usually produced in greatest abundance are cannabidiol (CBD) and/or Δ9-tetrahydrocannabinol (THC), but only THC is psychoactive.[50] Since the early 1970s, Cannabis plants have been categorized by their chemical phenotype or "chemotype", based on the overall amount of THC produced, and on the ratio of THC to CBD.[51] Although overall cannabinoid production is influenced by environmental factors, the THC/CBD ratio is genetically determined and remains fixed throughout the life of a plant.[36] Non-drug plants produce relatively low levels of THC and high levels of CBD, while drug plants produce high levels of THC and low levels of CBD. When plants of these two chemotypes cross-pollinate, the plants in the first filial (F1) generation have an intermediate chemotype and produce intermedite amounts of CBD and THC. Female plants of this chemotype may produce enough THC to be utilized for drug production.[51][52]
Despite advanced analytical techniques, much of the cannabis used recreationally is inaccurately classified. One laboratory at the University of British Columbia found that Jamaican Lamb’s Bread, claimed to be 100% sativa, was in fact almost 100% indica (the opposite strain).[82] Legalization of cannabis in Canada (as of October 17, 2018) may help spur private-sector research, especially in terms of diversification of strains. It should also improve classification accuracy for cannabis used recreationally. Legalization coupled with Canadian government (Health Canada) oversight of production and labelling will likely result in more -- and more accurate -- testing to determine exact strains and content. Furthermore, the rise of craft cannabis growers in Canada should ensure quality, experimentation/research, and diversification of strains among private-sector producers.[83]
CBD Isolates/Concentrates: Anyone familiar with smoking hash or other cannabis concentrates like wax and BHO will be no stranger to this delivery method. Simply sprinkle some into a vaporizer or water pipe, ignite, inhale, and enjoy! We find that this option is useful for individuals looking to elevate their regular consumption of CBD-rich cannabis flowers or other smokable herbs.
Canabidol™ CBD Cannabis Oil (CBD Oli)– Available in 25%,50% and 75% concentrations. Our proprietary engineering process has been developed to isolate and remove any unwanted compounds, while creating the maximum potency level of phytocannabinoids.  State-of-the-art technology is employed to ensure a full-spectrum oil, that includes both high levels of Canabidiol, Cannabinoids and terpenes. This guarantees a consistent, pure, and premium product for our customers

Israel, another example, has led the way with ground-breaking research into cannabis cultivation. The country recently recognized medical marijuana as an official part of the nation’s branch of agriculture. Israel is already one of the world’s leading exporters of medical-grade cannabis. Recognizing marijuana cultivation as an official branch of the country’s agriculture will open up even more funds to support Israeli cannabis farmers.
Germplasm for the improvement of hemp is vital for the future of the industry in North America. However, there are no publicly available germplasm banks housing C. sativa in North America. The hundreds of seed collections acquired for Small’s studies (reviewed in Small 1979) were destroyed in 1980 because Canadian government policy at that time envisioned no possibility that hemp would ever be developed as a legitimate crop. An inquiry regarding the 56 United States Department of Agriculture hemp germplasm collections supplied to and grown by Small and Beckstead (1973) resulted in the reply that there are no remaining hemp collections in USDA germplasm holdings, and indeed that were such to be found they would have to be destroyed. While hemp has been and still is cultivated in Asia and South America, it is basically in Europe that germplasm banks have made efforts to preserve hemp seeds. The Vavilov Institute of Plant Research in St. Petersburg, Russia has by far the largest germplasm collection of hemp of any public gene bank, with about 500 collections. Detailed information on the majority of hemp accessions of the Vavilov Institute can be found in Anon. (1975). Budgetary problems in Russia have endangered the survival of this invaluable collection, and every effort needs to be made to find new funding to preserve it. Maintenance and seed generation issues for the Vavilov hemp germplasm collection are discussed in a number of articles in the Journal of the International Hemp Association (Clarke 1998b; Lemeshev et al. 1993, 1994). The Gatersleben gene bank of Germany, the 2nd largest public gene bank in Europe, has a much smaller Cannabis collection, with less than 40 accessions (detailed information on the hemp accessions of the Gatersleben gene bank are available at fox-serv.ipk-gatersleben.de/). Because hemp is regaining its ancient status as an important crop, a number of private germplasm collections have been assembled for the breeding of cultivars as commercial ventures (de Meijer and van Soest 1992; de Meijer 1998), and of course these are available only on a restricted basis, if at all.

Hemp is used to make a variety of commercial and industrial products including rope, textiles, clothing, shoes, food, paper, bioplastics, insulation, and biofuel.[5] The bast fibers can be used to make textiles that are 100% hemp, but they are commonly blended with other fibers, such as flax, cotton or silk, as well as virgin and recycled polyester, to make woven fabrics for apparel and furnishings. The inner two fibers of the plant are more woody and typically have industrial applications, such as mulch, animal bedding and litter. When oxidized (often erroneously referred to as "drying"), hemp oil from the seeds becomes solid and can be used in the manufacture of oil-based paints, in creams as a moisturizing agent, for cooking, and in plastics. Hemp seeds have been used in bird feed mix as well.[13] A survey in 2003 showed that more than 95% of hemp seed sold in the European Union was used in animal and bird feed.[14]
×